MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , .=
/* = = [ ] , .=
Um estado de Fock, em mecânica quântica, é qualquer estado do espaço de Fock com um número bem definido de partículas em cada estado. O nome se deve a Vladimir Fock.
De acordo com a mecânica quântica, o número de partículas de um sistema quântico, num estado físico totalmente geral, não tem por que estar bem definido, sendo possível que, ao fazer-se um medida do número de partículas, se obtenham diferentes resultados. No entanto, em certos casos, o sistema pode ter um estado físico peculiar no qual o número de partículas esteja totalmente bem definido e os estados nos quais isto acontece são precisamente os estados de Fock.
Explicação
Se nos limitamos, por simplicidade, a um sistema com um só tipo de partícula e um só modo, um estado de Fock representa-se por |n>, onde n é um valor inteiro. Isto significa que existem n quanta de excitação nesse modo. Assim, |0> corresponde ao estado fundamental (sem excitação), ou estado que representa o vazio quântico (isto é diferente de 0, que é o vector nulo que não é um estado possível do sistema por não ser um vector unitário - ver mais abaixo).
Os estados de Fock formam a forma mais conveniente de base do espaço de Fock. Estão definidos para seguir as seguintes relações em álgebra bosónica:
onde a (resp. a†) é o operador bosónico de aniquilação (resp. criação). Para uma álgebra fermiónica seguem-se relações similares.
O etiquetado dos estados de Fock mediante um número intero se justifica se introduzirmos o operador número de partículas definido como N = a†a. Se aplicamos este operador a um estado etiquetado como n que satisfaça as relações (1) pode-se comprovar que:
/* = = [ ] , .=
Isto permite comprovar que <a†a>=n, de facto os estados de Fock são autovectores do operador número de partículas e, por tanto, Var(a†a)=0. Isto implica que a medida do número de partículas N = a†a num estado de Fock sempre resulta num valor definido, sem flutuações.
O espaço de Fock, em mecânica quântica, é um sistema algebraico (um espaço de Hilbert) que se usa para descrever um estado quântico com um número variável ou desconhecido de partículas. Recebe o seu nome de Vladimir Fock.
Tecnicamente, o espaço de Fock é o espaço de Hilbert preparado como soma direta dos produtos tensoriais dos espaços de Hilbert para uma partícula:
- /* = = [ ] , .=
onde Sν é o operador que simetriza (ou anti-simetriza) o espaço, de forma que o espaço de Fock descreva adequadamente um conjunto de bosões ν=+ (ou fermiões ν=-). H é o espaço de Hilbert para uma só partícula. Esta forma de combinação de H, que resulta num espaço de Hilbert maior (o espaço de Fock), contém estados para um número arbitrário de partículas. Os estados de Fock são a base natural para este espaço.
O determinante de Slater é uma técnica matemática da mecânica quântica que se usa para gerar funções de onda antissimétricas que descrevam os estados colectivos de vários fermiões e que cumpram o princípio de exclusão de Pauli.
Este tipo de determinantes foram nomeados em referência a John C. Slater, físico e químico teórico americano.
Duas partículas
Para ilustrar o seu funcionamento pode-se considerar o caso mais simples: o de duas partículas. Se e são as coordenadas da partícula 1 e da partícula 2 respectivamente, pode-se gerar a função de ondas colectiva como produto das funções de onda individuais de cada partícula. Quer dizer:
- /* = = [ ] , .=
Esta expressão é conhecida como o produto de Hartree. De facto, este tipo de função de ondas não é válido para a representação de estados colectivos de fermiões já que esta função de ondas não é antissimétrica ante um intercâmbio de partículas. A função deve satisfazer a seguinte condição
- /* = = [ ] , .=
O produto de Hartree não satisfaz o princípio de Pauli. Este problema poderá ser resolvido se tivermos em conta a combinação linear de ambos os produtos de Hartree
- /* = = [ ] , .=
onde foi incluído o fator (1/√2) para que a função de ondas esteja normalizada convenientemente. Esta última equação pode ser reescrita como um determinante, da seguinte forma:
- /* = = [ ] , .=
conhecido como determinante de Slater das funções e . As funções assim geradas têm a propriedade de anular-se si duas das funções de onda de uma partícula forem igual ou, o que é equivalente, dois dos fermiões estejam no mesmo estado quântico. Isto é equivalente a satisfazer o princípio de exclusão de Pauli.
Generalização a partículas
Esta expressão pode ser generalizada sem grande dificuldade a qualquer número de fermiões. Para um sistema composto por fermiões, define-se o determinante de Slater como
- /* = = [ ] , .=
O uso do determinante como gerador da função de ondas garante a antissimetríca com respeito ao intercâmbio de partículas, assim como a impossibilidade de que duas partículas estejam no mesmo estado quântico, aspecto crucial ao se tratar com fermiões.
No método de Hartree-Fock, um único determinante de Slater usa-se como aproximação à função de ondas electrónica. Em métodos de cálculo mais precisos, tais como a interacção de configuração ou o MCSCF, utilizam-se sobreposições lineares de determinantes de Slater.
Comments
Post a Comment